Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells.

نویسندگان

  • Hadas Hezroni
  • Badi Sri Sailaja
  • Eran Meshorer
چکیده

Embryonic stem cell (ESC) chromatin is characterized by a unique set of histone modifications, including enrichment for H3 lysine 9 acetylation (H3K9ac). Recent studies suggest that histone deacetylase (HDAC) inhibitors promote pluripotency. Here, using H3K9ac ChIP followed by high throughput sequencing analyses and gene expression in E14 mouse ESCs before and after treatment with a low level of the HDAC inhibitor valproic acid, we show that H3K9ac is enriched at gene promoters and is highly correlated with gene expression and with various genomic features, including different active histone marks and pluripotency-related transcription factors. Curiously, it predicts the cellular location of gene products. Treatment of ESCs with valproic acid leads to a pervasive genome-wide and time-dependent increase in H3K9ac, but this increase is selectively suppressed after 4 h in H3K4me3/H3K27me3 bivalent genes. H3K9ac increase is dependent on the promoter's chromatin state and is affected by the binding of P300, various transcription factors, and active histone marks. This study provides insights into the genomic response of ESCs to a low level of HDAC inhibitor, which leads to increased pluripotency. The results suggest that a mild (averaging less than 40%) but global change in the chromatin state is involved in increased pluripotency and that specific mechanisms operate selectively in bivalent genes to maintain constant H3K9ac levels. Our data support the notion that H3K9ac has an important role in ESC biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone H3 Lysine 9 Acetylation Obstructs ATM Activation and Promotes Ionizing Radiation Sensitivity in Normal Stem Cells

Dynamic spatiotemporal modification of chromatin around DNA damage is vital for efficient DNA repair. Normal stem cells exhibit an attenuated DNA damage response (DDR), inefficient DNA repair, and high radiosensitivity. The impact of unique chromatin characteristics of stem cells in DDR regulation is not yet recognized. We demonstrate that murine embryonic stem cells (ES) display constitutively...

متن کامل

SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells.

SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and ...

متن کامل

H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells.

The pluripotent genome is characterized by unique epigenetic features and a decondensed chromatin conformation. However, the relationship between epigenetic regulation and pluripotency is not altogether clear. Here, using an enhanced MEF/ESC fusion protocol, we compared the reprogramming potency and histone modifications of different embryonic stem cell (ESC) lines (R1, J1, E14, C57BL/6) and fo...

متن کامل

University of Birmingham The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing

Background: Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation and H3K4 hypermethylation in various cell types. They find clinical application as anti-epileptics and chemotherapeutic agents, but the pathways through which they operate remain unclear. Surprisingly, changes in gene expression caused by HDACi are often limited in extent and can be positive or negative. Here we h...

متن کامل

Time- and residue-specific differences in histone acetylation induced by VPA and SAHA in AML1/ETO-positive leukemia cells

We analyzed the activity of the histone deacetylase inhibitor (HDACi) suberoyl-anilide hydroxamic acid (SAHA) on Kasumi-1 acute myeloid leukemia (AML) cells expressing AML1/ETO. We also compared the effects of SAHA to those of valproic acid (VPA), a short-chain fatty acid HDACi. SAHA and VPA induced histone H3 and H4 acetylation, myeloid differentiation and massive early apoptosis. The latter e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 41  شماره 

صفحات  -

تاریخ انتشار 2011